
End-to-end data-driven weather prediction

Anna Allen, Stratis Markou, Will Tebbutt, James Requeima, Wessel P. Bruinsma, 
Tom R. Andersson, Michael Herzog, Nicholas D. Lane, Matthew Chantry, J. Scott Hosking & 
Richard E. Turner

This is a PDF file of a peer-reviewed paper that has been accepted for publication. 
Although unedited, the content has been subjected to preliminary formatting. Nature 
is providing this early version of the typeset paper as a service to our authors and 
readers. The text and figures will undergo copyediting and a proof review before the 
paper is published in its final form. Please note that during the production process 
errors may be discovered which could affect the content, and all legal disclaimers 
apply.

Received: 10 July 2024

Accepted: 12 March 2025

Accelerated Article Preview 
Published online xx xx xxxx

Cite this article as: Allen, A. et al. End-to-end 
data-driven weather prediction. Nature  
https://doi.org/10.1038/s41586-025-08897-0 
(2025)

https://doi.org/10.1038/s41586-025-08897-0

Nature  |  www.nature.com

Accelerated Article Preview

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

https://doi.org/10.1038/s41586-025-08897-0


End-to-end data-driven weather prediction  
Anna Allen1,11†, Stratis Markou2,11†, Will Tebbutt 2,9, James Requeima4, Wessel P. Bruinsma5,  
Tom R. Andersson8,10, Michael Herzog6, Nicholas D. Lane1, Matthew Chantry7, J. Scott Hosking3,8 and Richard E. 

Turner2,3†  
1Department of Computer Science and Technology, University of Cambridge, Cambridge, UK  
2Department of Engineering, University of Cambridge, Cambridge, UK  
3The Alan Turing Institute, London, UK  
4Vector Institute, University of Toronto, Ontario, Toronto, Canada  
5Microsoft Research AI for Science, Cambridge, UK  
6Department of Geography, University of Cambridge, Cambridge, UK  
7European Centre for Medium-Range Weather Forecasts, Reading, UK  
8British Antarctic Survey, Cambridge, UK  
9Present address: The Alan Turing Institute, London, UK  
10Present Adress: Google DeepMind, London, UK  
 
11These authors contributed equally: Anna Allen, Stratis Markou 
†Corresponding author. Email: av555@cam.ac.uk, em626@cam.ac.uk, ret26@cam.ac.uk.  
  
Abstract  
Weather prediction is critical for a range of human activities including transportation, agriculture and 
industry, as well as the safety of the general public. Machine learning is transforming numerical weather 
prediction (NWP) by replacing the numerical solver with neural networks, improving the speed and accuracy 
of the forecasting component of the prediction pipeline 1,2,3,4,5,6. However, current models rely on numerical 
systems at initialisation and to produce local forecasts, limiting their achievable gains. Here we show that a 
single machine learning model can replace the entire NWP pipeline. Aardvark Weather, an end-to-end data-
driven weather prediction system, ingests observations and produces global gridded forecasts and local 
station forecasts. The global forecasts outperform an operational NWP baseline for multiple variables and 
lead times. The local station forecasts are skillful up to ten days lead time, competing with a post-processed 
global NWP baseline and a state-of-the-art end-to-end forecasting system with input from human forecasters. 
End-to-end tuning further improves the accuracy of local forecasts. Our results show that skillful forecasting 
is possible without relying on NWP at deployment time, which will enable the full speed and accuracy 
benefits of data-driven models to be realised. We believe Aardvark Weather will be the starting point for a 
new generation of end-to-end models that will reduce computational costs by orders of magnitude, and 
enable rapid, affordable creation of customised models for a range of end-users.  
  
  
Introduction  
Numerical weather prediction (NWP) systems are vital for creating weather forecasts required by emergency 
agencies, transport providers, agriculture, energy providers and the general public. Since the first numerical 
forecasts were produced in the 1950s, which required 24 hours to compute a single-day single-variable 
forecast on a 700 km grid 7, NWP systems have undergone a remarkable transformation. Modern systems 
predict a wide range of variables at up to 15 days lead time, the theoretical limit of medium-range weather 
forecasting predictability 8. These systems consist of an intricate series of models of different components 
of the Earth’s atmosphere, building on decades of research in Earth observation, data assimilation, fluid 
dynamics and statistical post-processing and requiring purpose-built supercomputers to run. 
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Generating a modern weather forecast begins with the acquisition of observations from a multitude of 
sources, including remote sensing instruments, in-situ observations, radar systems, radiosondes and aircraft 
data 19. Some of these data are processed to generate derived products such as atmospheric motion vectors 
and surface winds. Raw data and resulting processed products are fed into a data assimilation system which 
combines these with an initial guess from the previous forecast to generate a global approximation of the 
current state of the atmosphere. This approximation is then used as an initial state for a forecasting system 
that integrates equations of fluid mechanics and thermodynamics to output predictions at future lead times. 
Finally, the resulting predictions from the forecasting system are used for downstream tasks, for example to 
generate local forecasts. This step may consist of statistical post-processing and running further higher 
resolution regional NWP models. Each stage of this pipeline consists of multiple numerical models chained 
together, resulting in an intricate workflow20 that is challenging to iterate on and improve and requires 
purpose-built supercomputers to run. This motivates the development of fast, lightweight, and customisable 
alternatives. 
 
With end-to-end machine learning revolutionising multiple fields by replacing complex human designed 
workflows, it has been suggested that a data-driven model may one day replace the entire NWP pipeline 21. 
This will be transformational for weather prediction, reducing computational costs, removing bias from 
inflexible aspects of NWP systems, and enabling fast prototyping and optimisation for specific tasks. 
However, this has not been attempted to date, with studies focusing on applying machine learning to the 
easiest components of the pipeline. For example, machine learning models have been shown to outperform 
their operational state-of-the-art counterparts for replacing the numerical solver in the forecasting component 
1,2,4,5,6,22, deriving variables from raw satellite data in pre-processing 23,24,25, and post-processing forecast data 
in the downstream stages 26,27. Work on replacing the most challenging component, the assimilation system, 
remains at the stage of developing initial prototypes 3,28,29,30,31,32,33. The vision of an end-to-end data-driven 
solution therefore remains aspirational, with conventional NWP systems essential for all forms of operational 
forecasting.  
  
In a recent article assessing the prospect of end-to-end deep learning weather prediction the verdict was that 
“a number of fundamental breakthroughs are needed before this goal comes into reach”21. Here we report 
that these breakthroughs are happening earlier than expected. We present Aardvark Weather, the first end-
to-end data-driven weather forecasting system capable of generating predictions with no input from 
conventional NWP by instead learning a mapping from raw input observations to output forecasts. This 
allows Aardvark to tackle the complete weather prediction pipeline whilst being entirely independent from 
NWP products at prediction time, relying solely on observation data to generate forecasts. We demonstrate 
that, using an order of magnitude fewer observations than those available to operational baselines and orders 
of magnitude less compute, Aardvark is capable of producing forecasts on a global 1.50o grid that achieve 
lower root mean squared error (RMSE) than operational NWP systems across multiple variables and lead 
times. Furthermore, we demonstrate that this system provides local forecasts that achieve lower errors than 
post-processed NWP and a full end-to-end operational forecasting system for multiple lead times, and can 
be optimised end-to-end to maximise performance over variables and regions of interest.  
 
Results  
Aardvark Weather  
Aardvark Weather is a deep learning model which provides forecasts of eastward wind, northward wind, 
specific humidity, geopotential and temperature at 200, 500, 700 and 850hPa pressure levels, 10-metre 
eastward wind, 10-metre northward wind, 2-metre temperature and mean sea level pressure on a dense global 
grid, as well as station forecasts for 2-metre temperature and 10-metre wind speed. Aardvark consists of 
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three modules, and is designed to leverage high-quality reanalysis data during training while being entirely 
independent from NWP products at deployment time. Figure 1 (bottom) illustrates the operation of Aardvark, 
outlining the function of each of its three modules. 
 
First, an encoder module takes in observational data from multiple sources, both on-the-grid and off-the-
grid, and produces a gridded initial state. On-the-grid observations are data modalities on a regular grid, 
while off-the-grid modalities are available at a set of longitude-latitude locations. To achieve this we leverage 
recent advances from deep learning 34 in handling off-the-grid and missing data. This approach to state 
estimation differs from the data assimilation (DA) systems used in conventional NWP pipelines. 
Conventional DA systems use a recurrent update in which the previous forecast is adjusted in light of new 
observations, similar to the Kalman filter recursions in a Markov model. In principle, DA accumulates 
information from observations across all past time steps, however in practice it has been estimated that the 
effective window size is as little as four days35. Due to the complexities of training recurrent neural networks 
including the need for a spin up period and gradient instabilities 36, we therefore opt for a non-recurrent 
approach.  
  
Once the initial atmospheric state has been estimated, it is used as input to a processor module, which 
produces a gridded forecast at a lead time of 24 hours. Forecasts at subsequent lead times are produced by 
autoregressively feeding the predictions of the processor module back to it as an input, similar to existing 
approaches in data-driven weather forecasting 1,6. Finally, task-specific decoder modules ingest these 
forecasts and produce local predictions. While in this work we consider a decoder for a single downstream 
task, producing local station forecasts, this system is suitable for use with multiple separate decoders for 
different tasks. Together, the encoder, processor and decoder modules form a neural process 34, a machine 
learning system which naturally handles off-the-grid and missing data. A vision transformer (VIT) 37 forms 
the backbone of the encoder and processor modules, while decoder modules are implemented as a 
lightweight convolutional architecture. The full set of inputs and outputs for the modules is detailed in 
Extended Data Table 1. 
  
A key challenge in designing machine learning systems for observational atmospheric data is that the record 
for many instruments is relatively short, limiting the data available for training. The modular design of 
Aardvark (figure 1) addresses this issue by enabling pre-training using high-fidelity historical reanalysis data 
before fine-tuning on the scarcer observational data. Specifically, we train the system in a way that mimics 
how it will be deployed. We start by pre-training the encoder module using raw observations as input and 
reanalysis data as targets. We note that an advantage of this machine learning approach is that the model can 
learn to correct for biases in the input observations during training, therefore no bias correction step is 
performed on the input data. We also pre-train the processor using reanalysis data for both inputs and targets, 
and then fine-tune on the output of the state-estimation module. In the processor module, inputs and outputs 
are both on a regular 1.50o grid to match the reanalysis training data. We next train the decoder using the 
output of the processor as input and raw data as targets. This procedure ensures there is no mismatch between 
the training and deployment of the system. Finally, we fine-tune the encoder, processor and decoder modules 
jointly, to optimise the entire model for a specific variable and region. For all modules we train on data prior 
to 2018, and hold out 2018 and 2019 as test and validation years respectively.  
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Input variables  
Accurately estimating the state of the atmosphere requires inputs from a variety of observation sources. Input 
variables are selected to capture dynamics both at the Earth’s surface as well as at multiple different levels 
through the atmosphere. In-situ observations are taken from weather stations and ships at surface level, and 
radiosondes at upper levels. As coverage from these instruments is largely confined to the surface, as well 
as geographically skewed and sparse, remote sensing instruments provide a crucial complementary global 
data source. Motivated by gains observed in operational NWP systems38, 39, 40, we select four primary sources 
of satellite data: scatterometer data to provide information about surface wind over the ocean, multi-spectral 
(≈10 channels) microwave and infrared sounders and hyper-spectral (≈105 channels) infrared sounders to 
provide information on upper atmosphere temperature and humidity profiles, and geostationary infrared 
sounder data to provide an instantaneous snapshot of the state of the atmosphere. These observations are 
taken with different time windows ranging from one to 24 hours prior to lead-time zero. In contrast to 
operational medium-range NWP systems, observations are only included in the input if they are taken prior 
to lead time zero41. Figure 1 (top) shows an example of a single time slice of input data to Aardvark for in-
situ and remote sensing sources, with full details in Extended Data Table 2. These atmospheric observations 
are augmented by several temporal and orographic variables. We note that Aardvark only ingests 
approximately 8% of the observations1 available to conventional NWP systems42, more than an order of 
magnitude fewer input data.  
 
Evaluation: global forecasting  
For global gridded forecasts we compare Aardvark to four baselines. The simplest of these, persistence and 
hourly climatology, assess whether a forecasting system is skillful. A more challenging comparison is to the 
two most widely used deterministic operational global NWP systems: the Integrated Forecast System (IFS) 
in its high resolution (HRES) configuration from the European Centre for Medium Range Weather 
Forecasting (ECFMWF), and the Global Forecast System (GFS) from the National Centres for 
Environmental Prediction. While HRES typically outperforms GFS on global metrics, operational centres 
often use a selection of different models, including GFS, to create their local forecasts, so we include it our 
comparison. For each variable, pressure level, and lead time, we report the latitude weighted root mean 
squared error  (RMSE), a common metric for assessing the performance of deterministic forecasting 
systems43. For all baselines we take ERA5 reanalysis as ground truth. This choice is made as this is standard 
practice for evaluation machine learning NWP models. We note that, while in the present day, HRES analysis 
is of higher quality than ERA5 reanalysis, since ERA5 was developed using cycle Cy41r218 which remained 
operational until 2017, therefore the discrepancies between the two are limited for the test year of 2018.  
  
Figure 2 shows latitude weighted RMSE performance compared to the baselines for eight headline variables. 
Here Aardvark matches or outperforms GFS across most lead times, with the only exception being 
geopotential at 500hPa. In addition, for most variables, Aardvark approaches the performance of HRES. 
Overall, Aardvark’s errors are larger at higher atmospheric levels and shorter lead times compared to the 
operational baselines. This is possibly due to the higher concentration of observations close to the surface. 
For longer lead times, a by-product of fine-tuning to minimise errors at future lead times (see Methods) is 
that forecasts tend to become spectrally blurred. This phenomenon is commonly observed in data-driven 
weather forecasting systems 1,6,44. A full display of the latitude weighted RMSE of Aardvark across all 
variables and levels can be found in Figure 1 in the supplementary information. Further insights can be 
drawn from inspecting the power spectra, anomaly correlation coefficients and activities of Aardvark’s 
forecasts, shown in Figure 2, Figure 3 and Figure 4 of the supplementary information. This analysis suggests 
that while forecast blurring plays a role, Aardvark produces skillful forecasts and maintains meaningful 
signals even at longer lead times.  

ACCELE
RATED ARTIC

LE
 PREVIEW



  
Figure 3 shows an example of gridded global predictions at lead times of zero, one, two and four days for 
10-metre eastward wind. Aardvark successfully captures large-scale features of the atmospheric state, both 
in the mid-latitudes and the tropics. Many details are well represented, for example the formation of a tropical 
cyclone in the Southern Indian Ocean closely matches that in the ERA5 reanalysis data. This example hints 
at the potential of Aardvark for forecasting mesoscale high-impact weather events. Although some spectral 
blurring of the higher spatial frequencies is evident, these results are of remarkably high fidelity given the 
limited resolution and range of observations provided to the model. A comprehensive set of spatial plots 
across all variables is provided in Figures 6 to 29 in the supplementary information.  
   
Encoder module ablation  
A central innovation of the Aardvark Weather system is the estimation of an initial state from disparate data 
sources using the encoder module. With the volume and diversity of observational modalities available, an 
important question to ask is: which observational sources are most important for estimating each 
atmospheric variable, and how does each affect predictive performance? To investigate this we conduct an 
ablation experiment quantifying the significance of each observational source in our encoder module. We 
remove different observational sources from the set of encoder inputs, retrain the encoder with this reduced 
set, and evaluate it on the same test set as our original configuration, marked “ALL” (Figure 4). For example, 
the rows “no in-situ” and “no satellites” correspond to removing in-situ data and all satellite data respectively 
from the “ALL” configuration. We report the fractional increase in the latitude-weighted RMSE relative to 
the “ALL” configuration across all atmospheric variables for the initial condition generated at 𝑡𝑡 =  0. 
 
These results demonstrate that remote sensing data are of crucial importance in constraining the initial 
atmospheric state. Removing these data (no satellite in Figure 4), and training with in-situ observations only, 
leads to large skill reductions across all variables. Within different satellite modalities, the low earth orbit 
(LEO) sounder data are the most important. For example, removing these sounder modalities (no LEO) 
results in larger skill deterioration compared to, for example, removing scatterometer data (no ASCAT) or 
geostationary satellite data (no GEO). In-situ observations are most important for the surface variables, 
however they also play a surprisingly large role in predicting geopotential, particularly at lower levels. These 
results indicate that for future improvement of this system and development of other end-to-end data-driven 
systems, LEO sounder data are the most important source to include, with in-situ data providing an important 
complementary source to improve surface variable and geopotential forecasts. We provide full details of this 
experiment in Supplementary Information A.  
 
Evaluation: station forecasting  
In the next stage of the weather prediction pipeline, global gridded forecasts are used as input to downstream 
models to produce a variety of products for end users. One such category of products is producing local 
forecasts. We focus on applying Aardvark Weather to predict 2-metre atmospheric temperature and 10-metre 
wind speed at off-the-grid station locations. Accurate local predictions of temperature are vital for protection 
of public health during heatwaves and cold waves, in addition to agriculture and other use cases. Similarly, 
wind speed forecasts have a variety of end users for example in wind energy, marine forecasting and fire 
weather forecasting. We note that modules for any desired downstream task could be substituted for this 
station forecasting module.  
  
There are significant differences in how agencies in different countries produce forecasts for end users. In 
well-resourced countries, station forecasts are produced using global models followed by higher resolution 
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regional models out to a few days lead time and statistical post-processing46. In contrast, in less well-
resourced areas, while agencies have access to global products they often do not have access to comparable 
infrastructure to run high-resolution local NWP or post-process forecasts to a comparable degree47. With 
these considerations in mind, we report Aardvark’s performance across all stations globally, but also break 
it down over four regions of particular interest: the contiguous United States (CONUS), Europe, West Africa 
and the Pacific (Figure 5; k). The US and most European countries run both local NWP for shorter lead 
times, as well as sophisticated post-processing of both global and local products. In contrast, West Africa 
and the Pacific are regions in which many centres are less well equipped. Although some agencies in these 
regions run sophisticated NWP pipelines, others utilise solely raw HRES forecasts and issue operational 
forecasts for very short lead times 47. We compare Aardvark against per-station persistence and climatology, 
as well as against two challenging baselines: downscaled HRES and a full operational end-to-end baseline, 
the National Digital Forecast Database (NDFD) from the National Weather Service46. For a detailed 
description of baselines see Methods.  
  
Figure 5 shows the mean absolute error (MAE) performance of Aardvark, reported by variable and region. 
Globally Aardvark generates skillful forecasts for both temperature and wind speed up to a lead time of 10 
days, performing competitively with station-corrected HRES. For temperature, Aardvark is competitive with 
station-corrected HRES over both CONUS and Europe. In addition, remarkably, Aardvark matches the 
performance of the full operational NDFD baseline over CONUS. For lower resource areas in West Africa 
and the Pacific Aardvark outperforms station-corrected HRES at all lead times. For 10-metre wind speed, 
Aardvark has higher errors than station-corrected HRES over CONUS, and significantly outperforms the 
NDFD baseline. Over Europe, Aardvark has similar errors with station-corrected HRES up to four days lead 
time, and outperforms it thereafter. Finally, Aardvark generally outperforms station-corrected HRES over 
West Africa, while performing slightly worse over the Pacific. In addition to these results, we compare 
Aardvark’s performance to HRES for a set of held out stations globally, demonstrating competitive 
performance on both variables (see figure 5 in the Supplementary Information).  
 
End-to-end tuning  
End users of NWP products typically have a particular region and set of applications that are of interest. A 
powerful capability of Aardvark is the ability to tune the entire pipeline end-to-end to directly optimise for 
any desired quantity and region of interest. Optimising the performance for a particular end-user product 
would be challenging and expensive in a conventional NWP system. To explore this capability, we fine-tune 
Aardvark to optimise predictions of 2-metre temperature and 10-metre wind speed at one day lead time 
globally and for each of the four regions. Although here we focus on only these two variables, this is a 
powerful paradigm able to be applied anywhere there is uncertainty in the reanalysis training data, for 
example clouds and precipitation. 
 
We observe that fine-tuning Aardvark yields improvements both globally, as well in the specific regions of 
CONUS, Europe, West Africa and the Pacific (figure 5; bottom). For temperature, fine-tuning Aardvark 
results in large reductions in MAE of 6% over Europe, West Africa, the Pacific, and globally, and an 
improvement of 3% over CONUS. For 10-metre wind speed, small but statistically significant improvements 
of 1-2% are observed for all regions except the Pacific. To put these improvements into context, the last 
cycle update of the IFS improved surface variable scores in the range of two to six percent and took over a 
year of development by a large team of scientists.  
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Discussion  
We have introduced Aardvark Weather, an end-to-end weather forecasting system which is the first data-
driven system to tackle the entire NWP pipeline. Aardvark provides accurate forecasts that are orders of 
magnitude quicker to generate than existing systems, without any reliance on NWP products at deployment 
time. Generating a full forecast from observational data takes approximately one second on four NVIDIA 
A100 GPUs, compared to the approximately 1,000 node-hours required by HRES to perform data 
assimilation and forecasting 48 alone, before accounting for downstream local models and processing. In 
downstream tasks generating station forecasts of 2-metre temperature and 10-metre wind speed, Aardvark 
shows strong performance against operational NWP systems. Learning an end-to-end model offers the 
additional capability to optimise the system to maximise performance over an arbitrary variable or region of 
interest, opening the door for the creation of inexpensive, individually tailored models for any region 
globally, in an automated and streamlined fashion.  
  
End-to-end forecasting has significant potential for real world impact. Compared to conventional NWP 
systems, machine learning systems are not only faster and computationally cheaper, but are also significantly 
easier to improve and maintain. In conventional NWP a new module, for example for a novel 
parameterisation or micro-physics scheme, may take a team considerable time to build and integrate into the 
model. End-to-end data-driven systems such as Aardvark elegantly bypass this issue using a single model in 
place of this complex pipeline. The simplicity of this system both makes it both easier to deploy and maintain 
for users already running NWP, and also opens the potential for wider access to running bespoke NWP in 
areas of the developing world where agencies often lack the resources and expertise to run conventional 
systems. There is also significant potential in the demonstrated ability to fine-tune bespoke models to 
maximise predictive skill for specific regions and variables. This capability is of interest to many end users 
in areas as diverse as agriculture, renewable energy, insurance and finance.  
  
To envisage how an end-to-end data-driven model such as Aardvark could be deployed operationally, it is 
necessary to consider the limitations of the current model and a concrete set of steps required to turn it into 
a fully-fledged NWP system. As with all current AI-NWP systems1, 6, Aardvark does not yet run at the 
resolution of IFS. Further work is required both to increase grid resolution and to produce forecast ensembles 
through, e.g. diffusion 2. Other limitations centre around the use of observations. Further observational 
modalities will likely increase forecast skill. It is also important to consider how data from new instruments 
for which there are no training data available can be usefully integrated into the system. This could be 
accomplished by, for example, training on simulated data49. A further consideration is dealing with 
observation drift and other changes in data over time, which could be mitigated by regularly finetuning all 
modules with the most recent few months of data to adapt to changes in instrument characteristics.  
  
The results presented in this study only scratch the surface of the potential of Aardvark Weather and end-to-
end data-driven weather forecasting systems more broadly. Further capabilities could also be added by 
extending Aardvark to support multiple other forecast variables, both in its gridded forecasts as well as via 
its decoder module. For example, Aardvark could support a diverse range of decoder modules, to provide 
different types of end user forecasts such as hurricane, flood, severe convection, fire weather and other 
extreme weather warnings. A further exciting avenue for future research would be utilizing end-to-end 
systems at longer lead times to generate seasonal forecast products. Furthermore, additional observational 
modalities would allow for modelling of other components of the earth system, such as atmospheric 
chemistry for air quality forecasts and ocean parameters for marine forecasts. We envision that Aardvark 
Weather will be the first of a new generation of end-to-end weather forecasting systems tackling these 
diverse tasks.  
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Figure 1. Illustration of the data and operation of Aardvark Weather. (a) Illustration of the different data 
sources leveraged in Aardvark. The input data consist of observations from remote sensing instruments (top 
row of a) which we pre-grid before passing to the model, as well as in-situ observations from land and 
marine observation platforms and radiosondes (bottom row of a). Each of these data modalities contain 
several observational variables, of which we select a subset here for the purposes of illustration. Here, we 
show remote sensing data 9,10,11,12,13,14 after performing our gridding step, and raw in-situ data 15,16,17. Note 
that the colours in all six plots are meant for illustration purposes. The remote sensing data also include a 
range of meta-data about the measurements, omitted here for simplicity. White areas indicate regions of 
missing data which must be handled by the encoder module of Aardvark. (b) Illustration of of Aardvark at 
deployment time. First, an encoder module uses raw observations as input to estimate the initial state of the 
atmosphere across key variables at 𝑡𝑡 =  0. Next, a processor module ingests the estimated state to produce 
a forecast at the next lead time 𝑡𝑡 =  𝛿𝛿𝛿𝛿. Forecasts at subsequent lead times are produced autoregressively. 
Finally, a decoder module is applied to the on-the-grid states to produce off-the-grid predictions. The 
modular design of Aardvark allows for pre-training on large, high-quality ERA5 reanalysis data18. In this 
figure, the data displayed are the training data used in to train each module of Aardvark, from the 
aforementioned sources. Circular line drawings generated using DALLE.  
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Figure 2. Gridded global forecast performance for selected variables. Latitude-weighted RMSE using 
ERA5 18 reanalysis data as the ground truth, on the held out test year (2018), for the four surface variables: 
2-metre temperature (a; T2M), 10-metre eastward wind (b; U10), 10-metre northward wind (c; V10) and 
mean sea level pressure (d; MSLP) and four headline upper-atmosphere variables: temperature at 850hPa 
(e; T850), eastward wind at 700hPa (f; U700) specific humidity at 700hPa (g; Q700) and geopotential at 
500hPa (h; Z500), as a function of lead time 𝑡𝑡. At lead time 𝑡𝑡 =  0, Aardvark predicts the initial atmospheric 
state from from observational data alone. The error at 𝑡𝑡 =  0 corresponds to the error in the initial state. 
Note that HRES has non-zero error at 𝑡𝑡 =  0, as it is compared to ERA5 reanalysis. The HRES forecasts 43 
we use have been conservatively re-gridded to prevent aliasing, and we performed the same operation on 
the GFS forecasts 45. We report the mean performance of each system together with 98% confidence intervals 
in our estimate of the mean performance.  
 
Figure 3. Example of Aardvark’s gridded forecasts for the U10 wind component. Plots of the initial 
condition (a-c) and subsequent forecasts (d-l) for 10-metre eastward wind (U10), showing Aardvark’s 
prediction (a, d, g, j), the ERA5 ground truth18 (b, e, h, k), and the difference between the two (c, f, i, l). Lead 
time 𝑡𝑡 =  0 corresponds 00:00 on the 11th January 2018. Aardvark correctly predicts large-scale features 
for this variable, and correctly predicts the formation and positioning of the tropical cyclone Berguitta 
(highlighted in the magenta boxes), which reached peak intensity on the 15𝑡𝑡ℎ of January 2018 off the coast 
of Madagascar. We emphasise that the model makes these predictions entirely from raw observations 
9,10,11,12,13,14,15,16,17, without any NWP products as input.  
 
Figure 4. Encoder ablation experiments quantifying the impact of each data modality. Results of ablation 
experiments comparing the LW-RMSE of the encoder trained with all data sources, both remote sensing 9, 
10, 11, 12, 13, 14 as well as in-situ sources15, 16, 17 (ALL) to other encoder configurations including: removing the 
scatterometer data (no ASCAT), removing the geostationary sounder data (no GEO), removing all in-situ 
data (no in-situ), removing all low Earth orbit sounder data (no sounder), or removing all satellite data (no 
satellite). We report the fraction of increase in LW-RMSE of each configuration relative to ALL. 
 
Figure 5. Station forecast performance and end-to-end fine-tuning improvements. Top (a-j): Results for 
station forecasting for the held-out test set (2018) of HadISD data15. Here, Aardvark makes predictions at 
spatial locations observed during training, on temporally held out data, but it can also generate predictions 
at any arbitrary station location. We compare Aardvark’s forecasts to two state-of-the-art NWP baselines, 
the National Digital Forecast Database (NDFD) 46 for CONUS. We also compare against a version of HRES 
43 that we post-process using a separate scale and bias term for each station. We report the mean 
performance of each system together with 98% confidence intervals in our estimate of the mean performance. 
Bottom (k-m): Improvements from fine-tuning. Here, we compare the predictions of Aardvark for lead 𝑡𝑡 =
 1 day to those of its end-to-end fine-tuned counterpart for 2-metre temperature (T2M) and 10-metre wind 
speed (WS). We report the mean % improvement in each variable by region (k) with 98% confidence 
intervals. "Global" includes all stations (black and coloured). We emphasize Aardvark produces its 
predictions entirely from raw remote sensing 9,10,11,12,13,14 and in-situ 15,16,17 observations without any NWP 
products as input during test time. 
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Methods 
Datasets: state estimation inputs  
We select multiple remote sensing and in-situ observations for input to the atmospheric state estimation 
module. To ensure that no NWP system is required for operational deployment of Aardvark, we select only 
data that are available at either level 1B or 1C processing level50. Level 1B satellite data refers to calibrated 
and geolocated data, meaning the raw sensor measurements have been processed to correct for sensor and 
instrument biases but are still in the form of physical measurements, while Level 1C satellite data are further 
processed to include radiometric and geometric corrections, making it ready for analysis with accurate 
geolocation and radiance values50. Other requirements for inclusion of datasets are that they are available 
from 2007-2020 and are available in near real time to facilitate anticipated operational deployment. Where 
available for remote sensing products, we utilise fundamental climate data records, where data from earlier 
generation sensors are homogenised to match the characteristics of current sensors, creating a consistent data 
record for training. Extended Data Table 1, provides a summary of all datasets that are used as inputs to the 
encoder module, including the type of instrument, orbit and platform (if applicable), as well as the data 
provider and data selection window that we use. We note that for satellite instruments in low Earth orbit it 
is necessary to include a longer window of observations to attain full global coverage. In contrast station 
observations for all locations are available at 𝑡𝑡 =  0. Adding extra data would therefore be useful but is not 
necessary to achieve global coverage. As the data record is relatively short and over-fitting is a concern, we 
made the decision to limit the data to the shortest window possible whilst retaining global coverage.  
 
In-situ observations are included from land stations, marine platforms and radiosondes. In-situ land station 
observations measuring surface temperature (8719 stations), pressure (8016 stations), wind (8721 stations) 
and dew point temperature (8617 stations) at six hourly intervals are taken from the HadISD dataset51, 52, 
provided by the UK Met Office. Marine in-situ observations are taken from the International Comprehensive 
Ocean-Atmosphere Data Set (ICOADS)53 provided by The National Oceanic and Atmospheric 
Administration. This dataset consists of observations from ships and buoys globally, from which five 
variables are included, namely 2-metre air temperature, 10-metre northward and eastward wind, sea surface 
temperature and mean sea level pressure. As observations are not taken precisely on the hour, all 
observations from 𝑡𝑡 =  −1 hours to 𝑡𝑡 =  0 are included in the input. Upper atmosphere observations of 
humidity, wind, geopotential and temperature are taken from The Integrated Global Radiosonde Archive 
(IGRA)54, provided by the National Centers for Environmental Information. This dataset consists of 
radiosonde observations at 1375 sites globally. Each record contains observations at multiple levels, of which 
we select observations at the surface and 200, 500, 700 and 850hPa pressure levels. All profiles retrieved 
within the past six hours, from 𝑡𝑡 =  −6 hours to 𝑡𝑡 =  0, are included in the input.  
  
As in-situ observations are limited in geographic coverage, remote sensing observations are included from 
scatterometers and microwave and infrared sounders. Input data from satellites are ingested in the form of 
level one granules each containing a six minute slice of observations or orbits. Although in principle the 
Aardvark Weather system can handle these data in their raw form, for simplicity data were first transferred 
to a regular one degree grid by nearest neighbour interpolation where the most recent observation is 
maintained in cases where multiple observations are available for the same gridpoint.  
  
Several scatterometers are currently operational worldwide, of which we use the Advanced Scatterometer 
(ASCAT)55 instrument aboard MetOp-A, B and C. Data for this instrument are provided by the European 
Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). ASCAT provides a triplet of 
three measurements of backscatter (𝜎𝜎0) from which operational centres retrieve the wind speed and direction, 
using a geophysical model function which solves for the two unknowns as a function of the 𝜎𝜎0 triplet together 
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with satellite metadata56. In contrast to this approach we opt to simply include the raw 𝜎𝜎0 values together 
with the metadata as channels to the encoder module, eliminating the complexity of the retrieval process. As 
all MetOp satellites are in Low Earth Orbit (LEO), with a revisit time of approximately 24 hours, the input 
to the state estimation module comprises of the latest ASCAT observations available within the grid box 
from any of the three platforms on a regular 1.50o longitude-latitude grid from 𝑡𝑡 = −1 days to 𝑡𝑡 = 0 days.  
  
In operational NWP, temperature and humidity profiles in the upper atmosphere are retrieved using infrared 
and microwave sounder instruments57. For this purpose we include the Advanced Microwave Sounding 
Units A and B (AMSUA & AMSUB), and the Microwave Humidity Sounder (MHS) instruments for 
microwave observations and the High Resolution Infrared Radiation Sounder (HIRS/4) for infrared 
observations. Together, these instruments comprise the Advanced TIROS Operational Vertical Sounder 
(ATOVS) system used operationally to retrieve temperature and moisture profiles58. Data for these 
instruments is provided by The National Centers for Environmental Information (NCEI). Observations for 
AMSU-A, AMSU-B, MHS and HIRS are taken from the NOAA 15 through 19, Aqua and MetOp-A 
satellites. In operational NWP systems, both retrieved profiles and raw radiances are assimilated. Similar to 
ASCAT, profiles of the target variable are retrieved using a geophysical model function taking in the raw 
radiances and satellite metadata and solving for the desired observational profiles. We again opt to input the 
raw radiances together with the satellite metadata directly into the state estimation module without relying 
on higher level retrievals. As for ASCAT, the dataset consists of the latest observations from 𝑡𝑡 =  −1 to 𝑡𝑡 =
 0 days, taken within a grid box of a regular 1.50o longitude-latitude grid.  
 
We augment the ATOVS observations with data from a hyperspectral infrared sounder, the Infrared 
Atmospheric Sounding Interferometer (IASI)59. Data for this instrument is provided by The National Centers 
for Environmental Information (NCEI). IASI captures data at a much higher spectral resolution than HIRS/4, 
with a total of 8461 channels across three bands. To limit input data volume, we take the leading 15 principal 
components across these channels, a technique demonstrated to lead to limited performance degradation in 
operational NWP systems. We note that data from IASI is available from October 2007 as opposed to 
January 2007 for the rest of the training set. 
  
While platforms carrying scatterometer and passive microwave sounder instruments in LEO provide high-
resolution observations, they have the disadvantage of lower temporal resolution. In contrast, geostationary 
satellites provide very high temporal resolution though with more limited instrumentation. As the available 
channels on geostationary satellites vary geographically and with time, we opt to use a composite product, 
the Gridded Satellite dataset (GridSat)60, which provides homogenised retrievals of infrared and vapour 
window channels over standard geostationary platforms. Data for this instrument is provided by the National 
Climatic Data Center. For this data source we include the image taken at 𝑡𝑡 =  0.  
 
To account for diurnal, seasonal and longer term variations in the data, we include temporal information as 
input both to the encoder and forecasting modules. These channels consist of 

sin �2𝜋𝜋𝜋𝜋
366

� , cos �2𝜋𝜋𝜋𝜋
366

� , sin �2𝜋𝜋ℎ
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� where 𝑑𝑑 is the day of year and ℎ the hour of day. The 

absolute year is also included to account for any changes in data characteristics over the training record. In 
order to account for the effects of orography on the weather system, we include several sources of orographic 
information taken from the ERA5 dataset18 as static fields. These data are provided by the European Center 
for Medium Range Weather Forecasting. These are the geopotential at surface level, angle of sub-grid scale 
orography, anisotropy of sub-grid scale orography, slope of sub-grid scale orography and standard deviation 
of orography. 
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Datasets: pre-training  
The modular structure of Aardvark leverages ERA5 reanalysis data during the training phase to increase the 
length of the data record available. ERA5, or the Fifth Generation of the European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis18, is a state-of-the-art global atmospheric reanalysis dataset. 
It provides comprehensive information on various meteorological parameters such as temperature, humidity, 
wind, and geopotential, covering the period from 1940 to present. These data are provided by the European 
Center for Medium Range Weather Forecasting. From this we elect to train on data from 1979 onwards, 
coinciding with the beginning of widely available remote sensing observations which significantly improves 
the quality of the atmospheric reanalysis product.  
 
Datasets: baselines  
For the global gridded forecast experiments we compare the performance of Aardvark against four baselines: 
persistence, climatology, HRES and GFS. Persistence and climatology provide simple baselines for 
assessing whether a forecasting system is skillful. In persistence forecasting, it is assumed that the weather 
will remain unchanged from 𝑡𝑡 =  0 at all future lead times. For the climatology baseline we utilise the 
climatology product from WeatherBench 2 43. Here, the predicted state is obtained by taking the mean value 
of all ERA5 observations from 1990-2017 for a given day of the year and hour using a sliding window of 
length 61 days.  
  
The IFS and GFS are the two most widely used global operational NWP systems. As the focus of this study 
is on deterministic forecasting, we choose to compare our results to the HRES and GFS, deterministic runs 
at a resolution of 0.10◦ degrees and 0.25o degrees respectively. These constitute challenging baselines for 
comparison to Aardvark Weather which operates at a 1.50o resolution with just five vertical levels. For 
comparison to Aardvark, HRES and GFS outputs are conservatively regridded to 1.50o resolution. In 
particular, we use HRES forecast data and ERA5 target data as provided by WeatherBench 2 43, in which 
both datasets have been coarsened to 1.50o resolution using first order conservative re-gridding 61. This 
procedure reduces the effects of aliasing, ensuring that Aardvark does not get an unfair competitive 
advantage due to distortions in the power spectrum that would occur from naive sub-sampling. To ensure 
the GFS forecasts are compared fairly against Aardvark and HRES, we also apply conservative re-gridding 
to GFS. See Supplementary Information for further details on aliasing and its effects on signal spectra.  
  
For station forecasts we consider four baselines. Persistence and climatology are calculated based on station 
observations. For 2-metre temperature we calculate daily climatology, and for 10-metre wind speed monthly. 
We further consider two more challenging baselines: station-corrected HRES and NDFD over the contiguous 
United States. As HRES is a gridded product, sub-grid scale processes are not resolved. We therefore learn 
a bias correction individually for each station on the 2007-2017 training set, and use this to correct the station 
forecasts on the 2018 test set. NDFD is produced by the National Weather Service in the United States of 
America, and is a state-of-the art local forecasting system 62. Forecasts in the NDFD are created from an 
ensemble of over 30 models 63, including the IFS and GFS together with high resolution regional models at 
shorter lead times. The data from these systems is the shown to human forecasters at different National 
Weather Service (NWS) offices who create the final forecast. Our station forecasts are taken as the nearest 
gridbox forecast from the final NDFD forecast which is at approximately 2km resolution. NDFD therefore 
constitutes an extremely challenging baseline, capturing the full complexity of operational forecasting 
pipeline. 
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Evaluation metrics  
For the global gridded forecasting experiments we compare models on latitude weighted root mean squared 
error. Given arrays of gridded target forecasts 𝑦𝑦 and gridded target predictions 𝑦𝑦�, the latitude weighted 
RMSE of variable 𝑣𝑣 is calculated as  
 

LW-RMSE(𝑦𝑦,𝑦𝑦�, 𝑣𝑣) =
1
𝐵𝐵
��
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where 𝑏𝑏 indexes batch elements, 𝑣𝑣  indexes atmospheric variables, ℎ and 𝑤𝑤  index latitude and longitude 
coordinates and 𝛼𝛼ℎ are the latitude weights, defined as  
 

𝛼𝛼ℎ =
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where 𝜃𝜃ℎ is the latitude along the latitude-wise index ℎ, so that their average is equal to one. In machine 
learning, a (mini-)batch refers to a subset of the training dataset, typically used to compute a stochastic 
estimate of a model’s parameter gradients when performing gradient-based optimisation. For the station 
forecasting experiments we compare methods on mean absolute error. Given arrays of station target 
temperatures 𝑦𝑦 and predictions 𝑦𝑦�, the MAE is calculated as  
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where 𝑏𝑏 indexes batch elements, and 𝑛𝑛 indexes the stations in the forecast.  
  
Training objectives  
Separate training objectives are utilised for each of the three modules. For all three modules, we normalise 
the targets by calculating the mean and standard deviation for each variable and level, aggregating across all 
grid points. We note that the encoder and processor modules, which involve multiple target variables, this 
normalisation has the effect of implicitly weighting the variables, due to the scaling applied during 
normalisation. For the encoder module we determine an additional weighting by first training the model with 
using a latitude weighted RMSE objective of the form  
 

SUM-LW-RMSE(𝑦𝑦,𝑦𝑦�) =
1
𝑉𝑉
�LW-RMSE(𝑦𝑦,𝑦𝑦�, 𝑣𝑣)
𝑉𝑉

𝑣𝑣=1

(4)  

 
In this initial run, all variables are therefore weighted equally. Next, weights 𝛽𝛽𝑣𝑣  are produced for each 
variable by taking the reciprocal of the latitude weighted RMSE for each variable multiplied by a factor of 
three to generate weights within the range of approximately 0 to 1. The training objective for the encoder 
uses these weights, giving the variable and latitude weighted RMSE  
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VLW-RMSE(𝑦𝑦,𝑦𝑦�) =
1
𝑉𝑉
�𝛽𝛽𝑣𝑣

𝑉𝑉

𝑣𝑣=1

LW-RMSE(𝑦𝑦, 𝑦𝑦�, 𝑣𝑣) (5) 

 
For the processor module the training objective is the SUM-LW-RMSE (eq. 4). However, the processor 
module is trained to predict residuals (see “Processor module” below). We found the implicit weighting that 
is applied via normalisation works well, and we did not further weight the variables individually. Finally, 
for the decoder module the training objective is the same as for evaluation, that is eq. (3).  

 

Model architecture  
Aardvark Weather is a neural process model64. Neural processes are a family of deep learning models that 
provide a flexible framework capable of learning with off-the-grid data, missing and sparse data and 
providing probabilistic predictions at arbitrary locations at test time. These characteristics are ideally suited 
to working with complex environmental data for example in climate downscaling and sensor placement 65, 
66, 67, 68, 69.  
  
Our specific architecture is a novel member of the neural process family combining SetConv layers 
developed for the convolutional conditional neural process34, which handle off-the-grid and sparse data 
modalities and produce off-the-grid predictions, together with a vision transformer backbone currently used 
in state-of-the-art AI-NWP forecasting systems70. This provides scalability not currently attainable with 
standard transformer neural process models with attention based encoders71, whilst still retaining the 
flexibility to handle diverse data modalities. Here we give details for the architectures of these modules, how 
they are trained and fine-tuned, and how they are deployed. In the discussion that follows, note that the 
encoder, processor and decoder modules all receive auxiliary channels such as temporal embeddings and 
orographic information as input. For simplicity, we suppress these channels in our exposition, but it should 
be understood that all three modules receive them as input. We provide a complete listing of all inputs and 
outputs to our models in Extended Data Table 2.  
  
Encoder module  
The encoder module 𝐸𝐸 takes raw observations as input, and outputs a gridded estimate of the initial state of 
each variable for the processor module. Let 𝑜𝑜𝜏𝜏 = {𝑜𝑜𝜏𝜏,1, … , 𝑜𝑜𝜏𝜏,𝑁𝑁 } be the set of observations corresponding to 
time 𝜏𝜏, where each 𝑜𝑜𝜏𝜏,𝑛𝑛, corresponds to the observations and corresponding meta-data (e.g. viewing angle, 
solar elevation angle and observation time) of a single data modality. Each 𝑜𝑜𝜏𝜏,𝑛𝑛 = (𝑥𝑥𝜏𝜏,𝑛𝑛, 𝑦𝑦𝜏𝜏,𝑛𝑛) consists of a 
set of observations 𝑦𝑦𝜏𝜏,𝑛𝑛 and their corresponding longitude and latitude coordinates 𝑥𝑥𝜏𝜏,𝑛𝑛. Each data modality 
is either on-the-grid or off-the-grid, and has a corresponding function 𝜓𝜓𝑛𝑛 to transform 𝑜𝑜𝜏𝜏,𝑛𝑛 into a gridded 
representation of fixed dimensionality. For gridded observations, 𝜓𝜓𝑛𝑛 consists of the addition of a masking 
channel to distinguish missing data from observed data in the grid. For off-the-grid observations, each 𝜓𝜓𝑛𝑛 
consists of a SetConv layer34 with a learnable length scale. The SetConv layer produces a gridded 
representation of the data, as well as an accompanying density channel which carries information about the 
presence or absence of data, to handle irregularly sampled observations. The regular gridded representations 
of the modalities are concatenated to give a single gridded representation of dimension 𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊, where 𝐶𝐶 
is the number of resulting channels, 𝐻𝐻 is the number of latitude points and 𝑊𝑊 is the number of longitude 
points. This representation of the input data are fed into the backbone of the module, consisting of a vision 
transformer 𝑉𝑉𝑒𝑒 with patch size three, eight transformer blocks and latent dimension 512. Embeddings for 
each patch use an MLP following prior work 37. The encoder outputs the initial state estimate 𝑠̂𝑠𝜏𝜏,0 at time 𝜏𝜏 
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with dimension 24 × 𝑊𝑊 × 𝐻𝐻 where 24 is the number of variables modelled in the forecasting module. Putting 
this together, we have  
 

𝑠̂𝑠𝜏𝜏,0 = 𝐸𝐸(𝑜𝑜𝜏𝜏) = 𝑉𝑉𝑒𝑒 �⊙𝑛𝑛=1
𝑁𝑁 𝜓𝜓𝑛𝑛�𝑜𝑜𝜏𝜏,𝑛𝑛��  (6) 

 
where  𝑠̂𝑠𝜏𝜏,0 is the estimated initial state corresponding to time 𝜏𝜏 and ⊙ denotes concatenation. The encoder 
module is trained to predict ERA5 reanalysis targets using the VLW-RMSE (eq. 5) as its loss function. We 
train the module for 150 epochs using AdamW with early stopping and a cosine learning rate scheduler 
starting at an initial learning rate of 5 × 10−4 and decaying to zero at the final epoch.  
  
Processor Module  
The processor module 𝑃𝑃 takes the initial state estimate 𝑠̂𝑠𝜏𝜏,0 as input and outputs forecasts for lead-times of 

one to ten days. This module consists of ten separate vision transformers, 𝑉𝑉𝑝𝑝
(1), … ,𝑉𝑉𝑝𝑝

(10) , which are 

composed to produce gridded global forecasts at each of the ten lead times we consider. Here each 𝑉𝑉𝑝𝑝
(𝑖𝑖),  is 

designed to provide a one day forecast conditioned on the forecast of 𝑉𝑉𝑝𝑝
(𝑖𝑖−1). This 24-hour timestep is a 

common configuration in AI-NWP models 71,72, and is used here to avoid inconsistencies in assimilation 
procedures at the 06:00 and 18:00 UTC runs of IFS which may disadvantage this baseline in the comparison2, 
and for computational tractability. All vision transformers have a patch size 5, latent dimension 512 and 16 
transformer blocks. To improve modelling of interactions between variables we add cross-attention between 
variables at the start of the network, as suggested by73. The processor is trained using a pre-training phase 
followed by a fine-tuning phase. Let 𝑠̂𝑠𝜏𝜏,𝑡𝑡 be the ERA5 state corresponding to time 𝑡𝑡 and lead time 𝜏𝜏. During 

pre-training, the first vision transformer, 𝑉𝑉𝑝𝑝
(1), is trained to ingest 𝑠𝑠𝜏𝜏,0 as input and predict the residual 𝑠𝑠𝜏𝜏,1 −

 𝑠𝑠𝜏𝜏,0 using the SUM-LW-RMSE loss (eq. 4). We pre-train, 𝑉𝑉𝑝𝑝
(1) for 100 epochs using AdamW with a cosine 

learning rate scheduler starting at an initial learning rate of 5 × 10−4 and decaying to zero at epoch 100. 
During the fine-tuning phase, we train each vision transformer 𝑉𝑉𝑝𝑝

(𝑖𝑖) to work with the estimated state produced 

by the previous transformer 𝑉𝑉𝑝𝑝
(𝑖𝑖−1) as follows. Recall that 𝑠̂𝑠𝜏𝜏,0 is the estimated state produced by the encoder 

module. We start by training 𝑉𝑉(1) to predict 𝑠𝑠𝜏𝜏,1 −  𝑠𝑠�𝜏𝜏,0 using the initial state 𝑠̂𝑠𝜏𝜏,0 as input. Once 𝑉𝑉𝑝𝑝
(1) has 

been fine-tuned, we compute 𝑠̂𝑠𝜏𝜏,1 = 𝑠̂𝑠𝜏𝜏,0 + 𝑉𝑉(1)(𝑠̂𝑠𝜏𝜏,0), and initialise the network 𝑉𝑉𝑝𝑝
(2) using the weights of 

𝑉𝑉𝑝𝑝
(1). We then fine-tune 𝑉𝑉𝑝𝑝

(2)  to predict 𝑠𝑠𝜏𝜏,2 −  𝑠𝑠�𝜏𝜏,1 using 𝑠̂𝑠𝜏𝜏,1 the previously estimated initial state as input. 
We proceed sequentially in this fashion, until all networks have been initialised and fine-tuned. We note that 
this procedure can be regarded as an instance of the pushforward trick 74. At deployment time, we compose 
the transformers to obtain a forecast for the desired lead time, that is  

 

𝑠𝑠𝜏𝜏,𝑡𝑡 = 𝑃𝑃�𝑠𝑠𝜏𝜏,0, 𝑡𝑡� = 𝑉𝑉�𝑝𝑝
(𝑡𝑡)  ∘ … ∘ 𝑉𝑉�𝑝𝑝

(1)�𝑠𝑠𝜏𝜏,0� (7) 
 
 

where 𝑉𝑉�𝑝𝑝
(𝑡𝑡)(⋅) = ⋅  + 𝑉𝑉𝑝𝑝

(𝑡𝑡)(⋅) and 𝑠𝑠𝜏𝜏,0 = 𝐸𝐸(𝑜𝑜𝜏𝜏) is the initial state produced by the encoder.  
 
Decoder module  
The final step in the forecasting pipeline is the decoder module. For each lead-time 𝑡𝑡, we train a lightweight 
convolutional station forecasting module 𝐷𝐷𝑡𝑡, which takes the gridded estimated state 𝑠𝑠𝜏𝜏,𝑡𝑡, as well as target 
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longitude-latitude coordinates 𝑥𝑥 and auxiliary orographic information as inputs, and produces predictions 
for the corresponding station temperature measurements 𝑦𝑦𝜏𝜏,𝑡𝑡 . Each 𝐷𝐷𝑡𝑡consists of a UNet architecture75, 
followed be a SetConv layer which maps on-grid predictions to predictions at arbitrary station locations, 
followed by an MLP which incorporates the auxiliary orographic information, to produce local forecasts 
𝑦𝑦�𝜏𝜏,𝑡𝑡. The UNet consists of four encoder blocks (which consist of 2D convolutions, BatchNorm layers, ReLU 
activations and MaxPool operations) followed by four decoder blocks (which consist of transpose 2D 
convolutions, BatchNorm layers, ReLU activations and MaxPool operations). The encoder and decoder 
blocks have skip connections, and channel dimensions (16, 32, 64, 128, 64, 32, 16, 1). We train each 𝐷𝐷𝑡𝑡 for 
10 epochs, using AdamW, with a learning rate of 1 × 10−3 and the RMSE loss (eq. 3). To produce local 
forecasts at coordinates 𝑥𝑥, we compute  
 

𝑦𝑦�𝜏𝜏,𝑡𝑡 = 𝐷𝐷𝑡𝑡�𝑠𝑠𝜏𝜏,𝑡𝑡 , 𝑥𝑥� (8) 

where 𝑠𝑠𝜏𝜏,𝑡𝑡 is the global forecast defined in eq. (7).  
 
 
End-to-end deployment  
At deployment time, no ERA5 input is required to run the system. To obtain global forecasts, we compose 
the encoder and processor together, and compute  
 

𝑠̂𝑠𝜏𝜏,𝑡𝑡 = 𝑃𝑃𝑡𝑡 ∘ 𝐸𝐸(𝑜𝑜𝜏𝜏) (9) 

 

where 𝑃𝑃𝑡𝑡(⋅) = 𝑃𝑃(⋅, 𝑡𝑡). If we want to produce local station forecasts, we compose the encoder, processor as 
well as decoder modules, and compute  
 

𝑦𝑦�𝜏𝜏,𝑡𝑡 = 𝐷𝐷𝑡𝑡(𝑃𝑃𝑡𝑡 ∘ 𝐸𝐸(𝑜𝑜𝜏𝜏), 𝑥𝑥) (10) 

 

Station forecasting baselines  
We compare Aardvark against per-station persistence and climatology, as well as against two challenging 
baselines. The first of these is a downscaled version of HRES: for each station, we select the nearest gridpoint 
from the HRES 0.25o forecast, and learn an affine correction (a scale and a constant bias) on a per-station 
basis to correct for systematic biases, which is a common and highly effective downscaling method76. We 
note that further, region-specific, downscaling refinements are possible, e.g. using local nested NWP. These 
could potentially further improve the performance of NWP systems, so the station-corrected HRES results 
we present should not necessarily be interpreted as the state-of-the-art in downscaling performance, but 
rather as a strong and globally applicable baseline. Second, over CONUS, we also compare against a full 
operational end-to-end baseline, the National Digital Forecast Database (NDFD) from the National Weather 
Service. NDFD forecasts are an archive of data from National Weather Service offices produced by 
combining the output of multiple global and regional forecasting models, post-processing these and 
incorporating input from human forecasters46.  
 
 
 

ACCELE
RATED ARTIC

LE
 PREVIEW



End-to-end fine-tuning  
In order to perform end-to-end fine-tuning, we compose the encoder together with the lead time 𝑡𝑡 = 1 
processor and decoder modules, producing local station forecasts for lead time 𝑡𝑡 = 1 given by  
 

𝑦𝑦�𝜏𝜏,1 = 𝐷𝐷1(𝑃𝑃1 ∘ 𝐸𝐸(𝑜𝑜𝜏𝜏), 𝑥𝑥) (11) 

This composition produces a single machine learning model, whose inputs consist of all raw observational 
sources of the encoder module, and whose outputs consist of the predictions of the decoder module. We then 
fine-tune this composite mode, i.e. all three networks, jointly with either 2-metre temperature or 10-metre 
windspeed station observations 𝑦𝑦𝑡𝑡,1 as the only targets, using the RMSE loss. Specifically, the fine-tuning 
procedure consists of loading the pre-trained weights of the encoder, processor and decoder modules, and 
performing stochastic gradient descent on the parameters of the three modules 𝐸𝐸, 𝑃𝑃1 and 𝐷𝐷, to minimize the 
RMSE loss between the station forecast 𝑦𝑦�𝜏𝜏,1 and its corresponding target 𝑦𝑦𝑡𝑡,1. We use AdamW and optimise 
all parameters of the modules for 25,000 gradient steps with a constant learning rate of 5 × 10−5 and early 
stopping, as described by the following procedure.  

 

During training, we store checkpoints of our models, in order to perform region-based model selection during 
evaluation. Specifically, every 1,000 fine-tuning gradient steps, we store a copy of the model weights at that 
point in training, commonly referred to as a checkpoint. We then use the checkpoints to perform model 
selection based on performance on a held-out validation set. Specifically, we evaluate each of the model 
checkpoints generated during fine-tuning on the validation data on the data from each of the regions we 
consider, namely Global, CONUS, Europe, West Africa and the Pacific. For each region, we then select the 
best checkpoint, as measured by performance on the validation set for that region, and evaluate this on the 
test data corresponding to the given region.  
  
Model size and training costs  
All model training for this paper was performed on a single virtual machine with four NVIDIA A100 GPUs. 
The encoder module contains approximately 31 million parameters and requires 13 hours to train. The 
processor module contains approximately 54 million parameters, and requires 8 hours to train on ERA5 and 
3 hours to fine-tune using the output of the encoder module as input. Each of the eleven decoder modules 
contains approximately 2 million parameters and takes approximately 30 minutes to train. End-to-end fine-
tuning of the encoder, processor and decoder modules takes 2 hours. The total time to train the model is 
therefore approximately 100 GPU hours. 
 
Data availability. The dataset to run Aardvark Weather will be made available at 10.57967/hf/4274 on the 
completion of peer review. All figures have been generated using a combination of the Latex tikz package 
and the matplotlib Python package77. All coastlines and borders drawn in the spatial plots in the main text 
and supplement of the paper come from the border and coastline functionality of the matplotlib package.  
 
Code availability. The code used for training the models, the trained models themselves, example test data, 
and notebook examples for how to apply the models to make predictions is made available here via a Zenodo 
link DOI 10.5281/zenodo.13158382. 

 
 
 

ACCELE
RATED ARTIC

LE
 PREVIEW

https://doi.org/10.57967/hf/4274
https://zenodo.org/records/13158382?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6Ijk5ZWU4ZGJkLTY5NDEtNDdiNS05M2NlLTZmOGIzMzRjZDgzYSIsImRhdGEiOnt9LCJyYW5kb20iOiI0N2RkZGVlMDFiOGNjZDZhODI1MThiMDQyM2FjOTdlMiJ9.XJRSx0nAgpHBeiU6MeSuT9wjYQo9OmKv3h1gpWgf7bWguaoMbBTPJmLIPUEL8aMcLFZeLLVuspQNkERyTcqKsg


Methods references 

50. Earthdata, NASA https://www.earthdata.nasa.gov/learn/earth-observation-data-basics/data-
processing-levels. Accessed: 2024-10-26.  

51. Dunn, R. J. et al. HadISD: A quality-controlled global synoptic report database for selected 
variables at long-term stations from 1973–2011. Climate of the Past 8, 1649–1679 (2012).  

52. Dunn, R. J., Willett, K. M., Parker, D. E. & Mitchell, L. Expanding HadISD: Quality-
controlled, sub-daily station data from 1931. Geoscientific Instrumentation, Methods and 
Data Systems 5, 473–491 (2016).  

53. Freeman, E. et al. ICOADS Release 3.0: a major update to the historical marine climate 
record. International Journal of Climatology 37, 2211–2232 (2017).  

54. Durre, I., Vose, R. S. & Wuertz, D. B. Overview of the integrated global radiosonde archive. 
Journal of Climate 19, 53–68 (2006).  

55. Gelsthorpe, R., Schied, E. & Wilson, J. ASCAT-Metop’s advanced scatterometer. ESA 
bulletin 102, 19–27 (2000).  

56. Stoffelen, A., Verspeek, J. A., Vogelzang, J. & Verhoef, A. The CMOD7 geophysical model 
function for ASCAT and ERS wind retrievals. IEEE Journal of Selected Topics in Applied 
Earth Observations and Remote Sensing 10, 2123–2134 (2017).  

57. Rosenkranz, P. W. Retrieval of temperature and moisture profiles from AMSU-A and 
AMSU-B measurements. IEEE Transactions on Geoscience and Remote Sensing 39, 2429–
2435 (2001).  

58. Li, J. et al. Global soundings of the atmosphere from ATOVS measurements: The algorithm 
and validation. Journal of Applied Meteorology and Climatology 39, 1248–1268 (2000).  

59. Blumstein, D. et al. IASI instrument: Technical overview and measured performances. 
Infrared Spaceborne Remote Sensing XII 5543, 196–207 (2004).  

60. Knapp, K. R. & Wilkins, S. L. Gridded satellite (GridSat) GOES and CONUS data. Earth 
System Science Data 10, 1417– 1425 (2018).  

61. Jones, P. W. First-and second-order conservative remapping schemes for grids in spherical 
coordinates. Monthly Weather Review 127, 2204–2210 (1999).  

62. Service, N. W. National Digital Forecast Database: Short Range Guidance for TAF Sites 
2024. https://www.weather.gov/ media/mdl/ndfd/pd01002001curr.pdf.  

63. Service, N. W. How Do We Use Models in Our Forecasting? 2024. 
https://www.weather.gov/ilx/about_models.  

64. Garnelo, M. et al. Conditional neural processes in International conference on machine 
learning (2018), 1704–1713. 

65. Andersson, T. R. et al. Environmental sensor placement with convolutional Gaussian neural 
processes. Environmental Data Science 2, e32 (2023).  

66. Markou, S., Requeima, J., Bruinsma, W., Vaughan, A. & Turner, R. E. Practical Conditional 
Neural Process Via Tractable Dependent Predictions in International Conference on 
Learning Representations (2022).  

67. Vaughan, A., Tebbutt, W., Hosking, J. S. & Turner, R. E. Convolutional conditional neural 
processes for local climate downscaling. Geoscientific Model Development 15, 251–268 
(2022).  

68. Vaughan, A., Lane, N. D. & Herzog, M. Multivariate climate downscaling with latent neural 
processes in Tackling Climate Change with Machine Learning ICML Workshop (2021).  

69. Bruinsma, W. et al. Autoregressive Conditional Neural Processes in The Eleventh 
International Conference on Learning Representations (2023).  

ACCELE
RATED ARTIC

LE
 PREVIEW

https://www.earthdata.nasa.gov/learn/earth-observation-data-basics/data-processing-levels
https://www.earthdata.nasa.gov/learn/earth-observation-data-basics/data-processing-levels
https://www.weather.gov/media/mdl/ndfd/pd01002001curr.pdf
https://www.weather.gov/ilx/about_models
https://www.weather.gov/ilx/about_models


70. Bodnar, C. et al. Aurora: A foundation model of the atmosphere. arXiv preprint 
arXiv:2405.13063 (2024).  

71. Nguyen, T. et al. Scaling transformer neural networks for skillful and reliable medium-range 
weather forecasting. arXiv preprint arXiv:2312.03876 (2023).  

72. Couairon, G., Lessig, C., Charantonis, A. & Monteleoni, C. ArchesWeather: An efficient AI 
weather forecasting model at 1.5 degree resolution. arXiv preprint arXiv:2405.14527 (2024).  

73. Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K. & Grover, A. Climax: A foundation 
model for weather and climate. arXiv preprint arXiv:2301.10343 (2023).  

74. Brandstetter, J., Worrall, D. & Welling, M. Message Passing Neural PDE Solvers 2023. 
arXiv: 2202.03376 [cs.LG].  

75. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical 
Image Segmentation 2015. arXiv: 1505.04597 [cs.CV].  

76. Bouallègue, Z. B. et al. Statistical modeling of 2-m temperature and 10-m wind speed 
forecast errors. Monthly Weather Review 151, 897–911 (2023).  

77. Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in Science & Engineering 
9, 90–95 (2007).  

78. Scholz, J., Andersson, T. R., Vaughan, A., Requeima, J. & Turner, R. E. Sim2real for 
environmental neural processes. arXiv preprint arXiv:2310.19932 (2023).  

79. Chai, J., Zeng, H., Li, A. & Ngai, E. W. Deep learning in computer vision: A critical review 
of emerging techniques and application scenarios. Machine Learning with Applications 6, 
100134. ISSN: 2666-8270. https://www.sciencedirect.com/ 
science/article/pii/S2666827021000670 (2021).  

80. Deshmukh, A. M. Comparison of Hidden Markov Model and Recurrent Neural Network in 
Automatic Speech Recogni- tion. European Journal of Engineering and Technology Research 
5, 958–965. https://www.ej-eng.org/index.php/ejeng/ article/view/2077 (Aug. 2020).  

81. Gordon, J., Bronskill, J., Bauer, M., Nowozin, S. & Turner, R. Meta-Learning Probabilistic 
Inference for Prediction in  International Conference on Learning Representations (2019). 
https://openreview.net/forum?id=HkxStoC5F7.  

82. Cao, Y., Fang, Z., Wu, Y., Zhou, D.-X. & Gu, Q. Towards understanding the spectral bias of 
deep learning. arXiv preprint arXiv:1912.01198 (2019).  

83. Rahaman, N. et al. On the Spectral Bias of Neural Networks in Proceedings of the 36th 
International Conference on Machine Learning (eds Chaudhuri, K. & Salakhutdinov, R.) 97 
(PMLR, Sept. 2019), 5301–5310. 

 

Acknowledgements. We gratefully acknowledge the agencies whose efforts in collecting, curating, and 
distributing datasets made this study possible. This work stands on the foundation of decades of contributions 
from the meteorological community and their commitment to sharing data. Specifically, we thank The 
European Organisation for the Exploitation of Meteorological Satellites, The UK MetOffice, The National 
Environmental Satellite, Data, and Information Service, The National Centers for Environmental 
Information, The National Oceanic and Atmospheric Administration, The National Climatic Data Center, 
NSF National Center for Atmospheric Research, The European Centre for Medium-Range Weather 
Forecasts. The JASMIN Environmental Data Service and WeatherBench2 project provided invaluable 
access to pre-processed data sources. This work was generously supported by The Alan Turing Institute, 
with funding and access to computational resources. Anna Allen acknowledges the UKRI Centre for 
Doctoral Training in the Application of Artificial Intelligence to the study of Environmental Risks (AI4ER), 
led by the University of Cambridge (EP/S022961/1), and studentship funding from Google DeepMind. 

ACCELE
RATED ARTIC

LE
 PREVIEW

https://arxiv.org/abs/2202.03376
https://arxiv.org/abs/1505.04597
https://www.sciencedirect.com/science/article/pii/S2666827021000670
https://www.sciencedirect.com/science/article/pii/S2666827021000670
https://www.ej-eng.org/index.php/ejeng/article/view/2077
https://openreview.net/forum?id=HkxStoC5F7
https://openreview.net/forum?id=HkxStoC5F7


Stratis Markou acknowledges funding from the Vice Chancellor’s and George & Marie Vergottis scholarship 
of the Cambridge Trust, and the Qualcomm Innovation Fellowship. Will Tebbutt acknowledges funding 
from Huawei and EPSRC grant (EP/W002965/1). James Requeima acknowledges funding from the Data 
Sciences Institute at the University of Toronto. J. Scott Hosking is supported by the Alan Turing Institute’s 
Turing Research and Innovation Cluster in Digital Twins (TRICDT) and the Environment and Sustainability 
Grand Challenge, and EPSRC grant EP/Y028880/1. Richard E. Turner is supported an EPSRC Prosperity 
Partnership grant EP/T005386/1 between the University of Cambridge and Microsoft. We would like to 
thank Tomas Lazauskas for Cloud engineering support in setting up the compute platform, John Bronskill 
for technical advice on both compute and machine learning techniques, Peter Dueben for advice on baselines 
and Peter Lean for advice on counting the number of observations input to the IFS. 
 
Competing Interests. The authors do not have any competing interests to declare.  
 
Author contributions. A.A and R.T conceptualised the project. A.A, S.M, W.T, J.R, W.B and R.T designed 
the experiments. A.A selected and collected all data and designed the end-to-end system. A.A, S.M and W.T 
implemented the codebase. A.A, S.M, W.T and R.T wrote the initial draft of the paper and S.M produced all 
figures. T.A, M.H, N.L, M.C, S.H and all aforementioned authors provided feedback on results at various 
stages of the project and contributed to the final version of the manuscript.  
 
Supplementary information. Additional details on several aspects of this work, including supplementary 
figures and further discussion, are available in the supplementary information section, and rely on 
supplementary references 78,79,80,81,82,83. 
 
Extended display legends 
 
Table 1. Listing of the inputs and outputs of each module. Raw data are passed to the encoder module 
which outputs predictions of the 24 prognostic variables on a global 1.50o grid at 𝑡𝑡 = 0. This initial state is 
then input to the processor module to produce predictions for each of the prognostic variables at lead times 
of one to ten days on the same grid. Finally, the decoder module takes these global predictions to local 
predictions at station locations. 
 
Table 2. Summary of the observational datasets used to train Aardvark. Summary of the datasets, including 
the temporal window used in Aardvark. The acronyms “IR" and “MW" stand for infrared and microwave 
respectively.  
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Extended Data Table 1ACCELE
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Extended Data Table 2
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